1995
DOI: 10.1090/trans2/166/02
|View full text |Cite
|
Sign up to set email alerts
|

A ramification filtration of the Galois group of a local field

Abstract: Let K be a field of formal Laurent series with coefficients in a finite field of characteristic p, G

Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
101
0
1

Year Published

1998
1998
2022
2022

Publication Types

Select...
4
3

Relationship

1
6

Authors

Journals

citations
Cited by 16 publications
(102 citation statements)
references
References 2 publications
0
101
0
1
Order By: Relevance
“…In [1,2,3] the author introduced new techniques (nilpotent ArtinSchreier theory) which allowed us to study p-extensions of characteristic p with Galois groups of nilpotent class < p. Such groups come from Lie algebras via classical equivalence L → G(L) of the categories of Lie F p -algebras and p-groups of period p of the same nilpotent class s 0 < p, [11]. This equivalence can be briefly explained as follows.…”
Section: Introductionmentioning
confidence: 99%
“…In [1,2,3] the author introduced new techniques (nilpotent ArtinSchreier theory) which allowed us to study p-extensions of characteristic p with Galois groups of nilpotent class < p. Such groups come from Lie algebras via classical equivalence L → G(L) of the categories of Lie F p -algebras and p-groups of period p of the same nilpotent class s 0 < p, [11]. This equivalence can be briefly explained as follows.…”
Section: Introductionmentioning
confidence: 99%
“…она не имеет соотношений, которые могут быть выражены через элементы собст венного подмножества некоторого минимального множества образующих группы r(p)/r(p)( v°) . Заметим, что в случае, когда основное поле К имеет характерис тику р, эти соотношения по модулю подгруппы коммутаторов порядка ^ р были описаны в терминах образующих группы Г(р) в работах [1]- [3].…”
Section: теорема если Vo > -1 и н -конечно порожденная замкнутая ноunclassified
“…In Subsection 3 we obtain the ramification estimates for the Galois modules H from the image of V * : if v > 2 − 1/p then the higher ramification subgroups Γ (v) K act trivially on H. We also obtain the ramification estimate for the Galois modules which are associated with the modulo p subquotients of crystalline representations with HT weights from [0, p) and prove that both estimates are sharp. The methods we use here are close to the methods from [8,9,10]; one can use also our constructions to show that the estimates from [24] are sharp if e = n = 1. In Subsection 4 we explain the construction of our modification of Breuil's functor V f t .…”
Section: Introductionmentioning
confidence: 63%
“…In Subsections 3.3-3.5 we shall give a proof based on our characteristic p approach from [8,9,10]. One can also apply the methods from [24].…”
Section: Where the Galois Module V [γ] Is Identified With The Module mentioning
confidence: 99%
See 1 more Smart Citation