Reliability assessment of linear discretized structures with interval parameters subjected to stationary Gaussian multi-correlated random excitation is addressed. The interval reliability function for the extreme value stress process is evaluated under the Poisson assumption of independent up-crossing of a critical threshold. Within the interval framework, the range of stress-related quantities may be significantly overestimated as a consequence of the so-called dependency phenomenon, which arises due to the inability of the Classical Interval Analysis (CIA) ([1],[2]) to treat multiple occurrences of the same interval variables as dependent ones. To limit undesirable conservatism in the context of interval reliability analysis, a novel sensitivity-based procedure relying on a combination of the Interval Rational Series Expansion [3] and the Improved Interval Analysis via Extra Unitary Interval [4] is proposed. This procedure allows us to detect suitable combinations of the endpoints of the uncertain parameters which yield accurate estimates of the lower bound and upper bound of the interval reliability function for the extreme value stress process. Furthermore, sensitivity analysis enables to identify the most influential parameters on structural reliability. A numerical application is presented to demonstrate the accuracy and efficiency of the proposed method as well as its usefulness in view of decision-making in engineering practice.