Bearings are the most widely used mechanical parts in rotating machinery under high load and high rotational speeds. Operating continuously under such harsh conditions, wear and failure are imminent. Developing defects give rise to even-higher vibration and temperature levels. In general, mechanical defects in a machine cause high vibration levels. Therefore, bearing fault identification and early detection enables the maintenance team to repair the problem before it triggers catastrophic failure in the bearing. Machine downtime is thus avoided or minimized. This paper explores the use of Machine Learning (ML) integrated with decision-making techniques to predict possible bearing failures and improve the overall manufacturing operations by applying the correct maintenance actions at the right time. The accuracy of the Predictive Maintenance (PdM) module has been tested on real industrial production datasets. The paper proposes an effective PdM methodology using different ML algorithms to detect failures before they happen and reduce pump downtime. The performance of the tested ML algorithms is based on five performance indicators: accuracy, precision, F-score, recall, and an area under curve (AUC). Experimental results revealed that all tested ML algorithms are successful and effective. Furthermore, decision making with utility theory has been employed to exploit the probability of failures and thus help to perform the appropriate maintenance interventions. This provides a logical framework for decision-makers to identify the optimum action with the maximum expected benefit. As a case study, the model is applied on forwarding pumping stations belonging to the Sewerage Treatment Company (STC), one of the largest sewage stations in Qatar.