2020
DOI: 10.1007/978-3-030-50426-7_15
|View full text |Cite
|
Sign up to set email alerts
|

A Random Line-Search Optimization Method via Modified Cholesky Decomposition for Non-linear Data Assimilation

Abstract: This paper proposes a line-search optimization method for non-linear data assimilation via random descent directions. The iterative method works as follows: at each iteration, quadratic approximations of the Three-Dimensional-Variational (3D-Var) cost function are built about current solutions. These approximations are employed to build sub-spaces onto which analysis increments can be estimated. We sample search-directions from those sub-spaces, and for each direction, a line-search optimization method is empl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 66 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?