Sampling based algorithms provide efficient methods of solving robot motion planning problem. The advantage of these approaches is the ease of their implementation and their computational efficiency. These algorithms are probabilistically complete i.e. they will find a solution if one exists, given a suitable run time. The drawback of sampling based planners is that there is no guarantee of the quality of their solutions. In fact, it was proven that their probability of reaching an optimal solution approaches zero. A breakthrough in sampling planning was the proposal of optimal based sampling planners. Current optimal planners are characterized with asymptotic optimality i.e. they reach an optimal solutions as time approaches infinity. Motivated by the slow convergence of optimal planners, post-processing and heuristic approach have been suggested. Due to the nature of the sampling based planners, their implementation requires tuning and selection of a large number of parameters that are often overlooked. This paper presents the performance study of an optimal planner under different parameters and heuristics. We also propose a modification in the algorithm to improve the convergence rate towards an optimal solution.