Prebiotics, such as inulin, are non-digestible compounds that stimulate the growth of beneficial microbiota, which results in improved gut and overall health. In this study, we were interested to see if, and how, the ileal transcriptome altered after inulin administration in the pre-weaning period in pigs. Seventy-two Piétrain–Landrace newborn piglets were divided into three groups: (a) a control (CON) group (n = 24), (b) an inulin (IN)-0.5 group (n = 24), and (c) an IN-0.75 group (n = 24). Inulin was provided as a solution and administered twice a day. At week 4, eight piglets per group, those closest to the average in body weight, were sacrificed, and ileal scrapings were collected and analyzed using 3′ mRNA massively parallel sequencing. Only minor differences were found, and three genes were differentially expressed between the CON and IN-0.5 group, at an FDR of 10%. All three genes were downregulated in the IN-0.5 group. When comparing the CON group with the IN-0.75 group, five genes were downregulated in the IN-0.75 group, including the three genes seen earlier as differentially expressed between CON and IN-0.5. No genes were found to be differential expressed between IN-0.5 and IN-0.75. Validation of a selection of these genes was done using qRT-PCR. Among the downregulated genes were Angiopoietin-like protein 4 (ANGPTL4), Aquaporin 7 (AQP7), and Apolipoprotein A1 (APOA1). Thus, although only a few genes were found to be differentially expressed, several of them were involved in lipid metabolism, belonging to the peroxisome proliferator-activated receptor (PPAR) signaling pathway and known to promote lipolysis. We, therefore, conclude that these lipid metabolism genes expressed in the ileum may play an important role when supplementing piglets with inulin early in life, before weaning.