Abstract. We study the Travelling Salesman Problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3 conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal values of the TSP and its linear programming relaxation, is 4/3. Using polyhedral techniques in an interesting way, we obtain a polynomial-time 4/3-approximation algorithm for this problem on cubic graphs, improving upon Christofides' 3/2-approximation, and upon the 3/2 − 5/389 ≈ 1.487-approximation ratio by Gamarnik, Lewenstein and Svirdenko for the case the graphs are also 3-edge connected. We also prove that, as an upper bound, the 4/3 conjecture is true for this problem on cubic graphs. For subcubic graphs we obtain a polynomial-time 7/5-approximation algorithm and a 7/5 bound on the integrality gap.