Pinus massoniana is the major afforestation and vegetation restoration tree in southern China, and it plays an important role in the sustainable development of plantations. However, long-term single planting of P. massoniana has resulted in the decline of soil quality and forest productivity, and a soil fertility assessment is urgently needed. We selected P. massoniana plantations of four age stages for plot investigation and sampling to determine the soil physicochemical properties, microbial diversity and composition, and enzyme activities at different soil depths. The results showed that soil total phosphorus (TP) and available phosphorus (AP) decreased with the increase of age, especially low C/N ratio and high C/P and N/P ratio in the 30-year and 36-year stands, leading to P limitation. Meanwhile, the bacterial Shannon index also decreased with the increase of age and was positively correlated with AP, NO3−-N, and pH. However, the fungal Shannon index decreased first and then increased with the increase of age; soil acid phosphatase (S-ACP) and urease activities showed a similar trend. Correlation analysis demonstrated that the increase of total organic carbon (TOC) and total nitrogen (TN) promoted the increase of fungal Shannon index, which was beneficial to the secretion of more enzymes. We found that soil physicochemical properties, microbial diversity, and enzyme activity decreased simultaneously when soil depths increased. Moreover, Acidobacteria and Basidiomycota were the most abundant bacterial and fungal communities, respectively, followed by Proteobacteria and Actinobacteria for bacteria and Ascomycota for fungi, and these microbial taxa were significantly affected by soil water content (SWC), TOC, AP, and C/P. In conclusion, this work reveals the potential correlation among soil physicochemical properties, microbial diversity and composition, and enzyme activities, and revealed potential correlations among them which will help to improve understanding of soil conditions and provide a reference for rational management of soil resources.