INTRODUCTION The pandemic readiness toolbox needs to be extended, providing diagnostic tools that target different biomolecules, using orthogonal experimental setups and fit-for-purpose specification of detection. Here we build on a previous Cov-MS effort that used liquid chromatography-mass spectrometry (LC-MS) and describe a method that allows accurate, high throughput measurement of SARS-CoV-2 nucleocapsid (N) protein.
MATERIALS and METHODS We used Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA) technology to enrich and quantify proteotypic peptides of the N protein from trypsin-digested samples from COVID-19 patients.
RESULTS The Cov2MS assay was shown to be compatible with a variety of sample matrices including nasopharyngeal swabs, saliva and blood plasma and increased the sensitivity into the attomole range, up to a 1000-fold increase compared to direct detection in matrix. In addition, a strong positive correlation was observed between the SISCAPA antigen assay and qPCR detection up to a quantification cycle (Cq) of 30. The automatable addition only sample preparation, digestion protocol, peptide enrichment and subsequent reduced dependency upon LC allow analysis of up to 500 samples per day per MS instrument. Importantly, peptide enrichment allowed detection of N protein in a pooled sample containing a single PCR positive sample mixed with 31 PCR negative samples, without loss in sensitivity. MS can easily be multiplexed and we also propose target peptides for Influenza A and B virus detection.
CONCLUSIONS The Cov2MS assay described is agnostic with respect to the sample matrix or pooling strategy used for increasing throughput and can be easily multiplexed. Additionally, the assay eliminates interferences due to protein-protein interactions including those caused by anti-virus antibodies. The assay can be adapted to test for many different pathogens and could provide a tool enabling longitudinal epidemiological monitoring of large numbers of pathogens within a population, applied as an early warning system.