2022
DOI: 10.1063/5.0073851
|View full text |Cite
|
Sign up to set email alerts
|

A rapidly convergent method for solving third-order polynomials

Abstract: We present a rapidly convergent method for solving cubic polynomial equations with real coefficients. The method is based on a power series expansion of a simplified form of Cardano’s formula using Newton’s generalized binomial theorem. Unlike Cardano’s formula and semi-analytical iterative root finders, the method is free from round-off error amplification when the polynomial coefficients differ by several orders of magnitude or when they do not differ much from each other, but are all large or small by many … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 21 publications
0
0
0
Order By: Relevance