2023
DOI: 10.48550/arxiv.2302.06968
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A rate of convergence when generating stable invariant Hermitian random matrix ensembles

Abstract: Recently, we have classified Hermitian random matrix ensembles that are invariant under the conjugate action of the unitary group and stable with respect to matrix addition. Apart from a scaling and a shift, the whole information of such an ensemble is encoded in the stability exponent determining the "heaviness" of the tail and the spectral measure that describes the anisotropy of the probability distribution. In the present work, we address the question how these ensembles can be generated by the knowledge o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 42 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?