Based on the isonicotinic acid (HIN=pyridine-4-carboxylic acid), seven lanthanide metal-organic frameworks (MOFs) with the formula [Ln(IN)2 L] (Ln=Eu (1), Tb (2), Er (3), Dy (4), Ho (5), Gd (6), La (7), L=OCH2 CH2 OH) have been synthesized by mixing Ln2 O3 with HIN under solvothermal conditions, and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, and fluorescence spectroscopy. Crystal structural analysis shows that compounds 1-6 are isostructural, crystallize in a chiral space group P21 21 21 , whereas compound 7 crystallizes in space group C2/c. Nevertheless, they all consist of new intertwined chains. Simultaneously, on the basis of the above-mentioned compounds, we have realized a rational design strategy to form the doped Ln MOFs [(Eux Tb1-x )(IN)2 L] (x=0.35 (8), x=0.19 (9), x=0.06 (10)) by utilizing Tb(III) as the second "rare-earth metal". Interestingly, the photoluminescence of [(Eux Tb1-x )(IN)2 L] are not only adjustable by the ratios of Eu/Tb, but also temperature or excitation wavelength.