The development of incretin-based therapies (glucagon-like peptide 1 [GLP-1] receptor agonists and dipeptidyl peptidase-4 [DPP-4] inhibitors) has changed the landscape of type 2 diabetes management over the past decade. Current developments include longer-acting GLP-1 receptor agonists, fixed-ratio combinations of GLP-1 analogues and basal insulin, as well as implantable osmotic minipumps for long-term delivery of GLP-1 receptor agonists. In longer terms, oral or inhaled GLP-1 analogues may become a reality. In addition, oral enhancers of GLP-1 secretion (e.g. via G-protein-coupled receptors, nuclear farnesoid-receptor X and the G-proteincoupled bile acid-activated receptor [TGR5]) are currently being explored in experimental studies. Combination of GLP-1 with other gut hormones (e.g. peptide YY, glucagon, gastrin, glucose-dependent insulinotropic polypeptide [GIP], secretin, cholecystokinin, vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide) may enhance the glucose-and weight-lowering effect of GLP-1 alone, and dual or triple hormone receptor agonists may even exploit the properties of different peptides with just one molecule. There is also an increasing interest in employing incretin-based therapies in other areas, such as type 1 diabetes, impaired glucose metabolism, obesity, polycystic ovary syndrome, non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), psoriasis or even neurodegeneration. Thus, incretin-based therapies may continue to broaden the therapeutic spectrum for type 2 diabetes and for various other indications in the coming years. This is one of a series of commentaries under the banner '50 years forward', giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965Diabetologia ( -2015.Keywords GIP . GLP-1 . Gut hormones . Type 2 diabetes Where are we today and where have we come from?The development of incretin-based therapies is a splendid and unique example of the successful development of novel glucose-lowering medications based on basic research findings from academic researchers. Physiological experiments in human volunteers revealed different increments in insulin secretion after oral and intravenous glucose administration, which were subsequently attributed to the actions of the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) [1]. These peptide hormones were later synthesised and prepared for intravenous infusion in patients with type 2 diabetes. On this basis, the glucose-lowering activity of GLP-1 was first discovered by academic researchers. Later on, dipeptidyl peptidase-4 (DPP-4) inhibition was identified as an effective way of raising endogenous GLP-1 levels [2]. These clinical research findings have prompted the development of GLP-1 receptor