We show here that the total invertase activity in developing seeds of maize is due to two cell wall invertase (CWI) genes, Incw1 and Incw2 (Mn1). Our previous results have shown that loss-of-function mutations at the Mn1 locus lead to the miniature-1 (mn1) seed phenotype, marked by a loss of >70% of seed weight at maturity. The mn1 seed mutant is, however, non-lethal presumably because it retains a residual low level, approximately 1%, of the total CWI activity relative to the Mn1 endosperm throughout seed development. Evidence here shows that the residual activity in the mn1 mutant is encoded by the Incw1 gene. RNA level analyses, especially quantitative real-time PCR studies, showed significant spatial and temporal heterogeneity in the expression of the two CWI genes in the developing endosperm. The Mn1-encoded Incw2 transcripts were seen at the highest levels in the basal region (the sugar unloading zone) during the early phase of cell division and elongation in the endosperm. In contrast, the highest levels of Incw1 transcripts were seen in the storage phase in both the upper (storage cells) and the lower parts of the endosperm. Protein and enzyme level analyses, however, appeared to show a lack of concordance with the RNA level of expression in both the Mn1 and mn1 endosperms, indicating a possibility of post-transcriptional control in the expression of these two genes. Collectively, the data suggest an important role for apoplastic cleavage of sucrose throughout the duration of seed development; and, of the two isoforms, the INCW2 appears to control metabolic flux of sugar utilization in the developing endosperm.