Based on the SSH model, polaron dynamics in a system of highly ordered conjugated polymer chains is investigated, including polaron formation and transport in the presence of an external electric field. It is found that, beyond a certain strength of the interchain coupling, the injected electron will induce a two-dimensional delocalized polaron state, expanding over several chains. Dynamical simulations suggest that, under the same electric field, two-dimensional interchain delocalized polarons move faster than intrachain localized polarons, as suggested by earlier experiments.