Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Increasing the use of renewable biofuels in internal-combustion-engine (ICE) vehicles is a key strategy for reducing greenhouse gas emissions and conserving fossil fuels. Hybrid vehicles used in urban environments significantly reduce fuel consumption compared to conventional internal-combustion-engine cars. In hybrid vehicles integrating electric propulsion with biofuels offers even more significant potential to lower fuel consumption. One would like to think they should also be less polluted in all cases, but some results show that the opposite is true. This study’s aim was to evaluate a hybrid vehicle’s energy and environmental performance using different gasoline–bioethanol blends. A Worldwide Harmonized Light Vehicles Test Cycle (WLTC) study was conducted on a Toyota Prius II hybrid vehicle to assess changes in energy and environmental performance. During the WLTC test, data were collected from the chassis dynamometer, exhaust gas analyser, fuel consumption meter, and engine control unit (ECU). The collected data were synchronised, and calculations were performed to determine the ICE cycle work, brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), pollutant emissions (CO, HC, and NOx), CO2 mass emissions per cycle, and brake specific pollutant emissions per kilometre. The study shows that the performance of the hybrid vehicle’s ICE is strongly influenced by the utilisation of electrical energy stored in the battery, especially at low and medium speeds. As the bioethanol concentration increases, the engine’s ECU advances the ignition timing based on the knock sensor signal. A comprehensive evaluation using the WLTC indicates that increasing the bioethanol concentration up to 70% improves the energy efficiency of the hybrid vehicle’s internal combustion engine and reduces pollutant and CO2 emissions.
Increasing the use of renewable biofuels in internal-combustion-engine (ICE) vehicles is a key strategy for reducing greenhouse gas emissions and conserving fossil fuels. Hybrid vehicles used in urban environments significantly reduce fuel consumption compared to conventional internal-combustion-engine cars. In hybrid vehicles integrating electric propulsion with biofuels offers even more significant potential to lower fuel consumption. One would like to think they should also be less polluted in all cases, but some results show that the opposite is true. This study’s aim was to evaluate a hybrid vehicle’s energy and environmental performance using different gasoline–bioethanol blends. A Worldwide Harmonized Light Vehicles Test Cycle (WLTC) study was conducted on a Toyota Prius II hybrid vehicle to assess changes in energy and environmental performance. During the WLTC test, data were collected from the chassis dynamometer, exhaust gas analyser, fuel consumption meter, and engine control unit (ECU). The collected data were synchronised, and calculations were performed to determine the ICE cycle work, brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), pollutant emissions (CO, HC, and NOx), CO2 mass emissions per cycle, and brake specific pollutant emissions per kilometre. The study shows that the performance of the hybrid vehicle’s ICE is strongly influenced by the utilisation of electrical energy stored in the battery, especially at low and medium speeds. As the bioethanol concentration increases, the engine’s ECU advances the ignition timing based on the knock sensor signal. A comprehensive evaluation using the WLTC indicates that increasing the bioethanol concentration up to 70% improves the energy efficiency of the hybrid vehicle’s internal combustion engine and reduces pollutant and CO2 emissions.
For nearly two centuries, electric drives have been used in transportation. Nevertheless, they were not always favored by designers. The century-long dominance of heat engines led to the disregard of numerous challenges associated with the operation of electric drive systems. One of these issues is the optimization of energy consumption by an electric vehicle. This publication proposes an electronic Energy Consumption Optimizer (ECO) that predictively uses information about the shape of the route and speed limits on its individual sections to control the motor speed and gear changes in the gearbox. This work presents the structure of the optimizer system and the developed control algorithms. Additionally, electric motor excitation control was used, which may have contributed to reducing the power and weight of the electric drive motor. Simulation studies carried out using WLTP test cycles and cycles from real road routes showed the potential to decrease energy consumption for vehicle movement by approximately 10%.
The power split plug-in hybrid electric bus (PHEB) boasts the capability for concurrent decoupling of rotation speed and torque, emerging as the key technology for energy conservation. The optimization of energy management strategies (EMSs) and powertrain parameters for PHEB contributes to bolstering vehicle performance and fuel economy. This paper revolves around optimizing fuel economy in PHEBs by proposing an optimization algorithm for the combination of a multi-layer rule-based energy management strategy (MRB-EMS) and powertrain parameters, with the former incorporating intelligent algorithms alongside deterministic rules. It commences by establishing a double-planetary-gear power split model for PHEBs, followed by parameter matching for powertrain components in adherence to relevant standards. Moving on, this paper plunges into the operational modes of the PHEB and assesses the system efficiency under each mode. The MRB-EMS is devised, with the battery’s State of Charge (SOC) serving as the hard constraint in the outer layer and the Charge Depletion and Charge Sustaining (CDCS) strategy forming the inner layer. To address the issue of suboptimal adaptive performance within the inner layer, an enhancement is introduced through the integration of optimization algorithms, culminating in the formulation of the enhanced MRB (MRB-II)-EMS. The fuel consumption of MRB-II-EMS and CDCS, under China City Bus Circle (CCBC) and synthetic driving cycle, decreased by 12.02% and 10.35% respectively, and the battery life loss decreased by 33.33% and 31.64%, with significant effects. Subsequent to this, a combined multi-layer powertrain optimization method based on Genetic Algorithm-Optimal Adaptive Control of Motor Efficiency-Particle Swarm Optimization (GOP) is proposed. In parallel with solving the optimal powertrain parameters, this method allows for the synchronous optimization of the Electric Driving (ED) mode and the Shutdown Charge Hold (SCH) mode within the MRB strategy. As evidenced by the results, the proposed optimization method is tailored for the EMSs and powertrain parameters. After optimization, fuel consumption was reduced by 9.04% and 18.11%, and battery life loss was decreased by 3.19% and 7.42% under the CCBC and synthetic driving cycle, which demonstrates a substantial elevation in the fuel economy and battery protection capabilities of PHEB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.