Infrared sensors capture thermal radiation emitted by objects. They can operate in all weather conditions and are thus employed in fields such as military surveillance, autonomous driving, and medical diagnostics. However, infrared imagery poses challenges such as low contrast and indistinct textures due to the long wavelength of infrared radiation and susceptibility to interference. In addition, complex enhancement algorithms make real-time processing challenging. To address these problems and improve visual quality, in this paper, we propose a multi-scale FPGA-based method for real-time enhancement of infrared images by using rolling guidance filter (RGF) and contrast-limited adaptive histogram equalization (CLAHE). Specifically, the original image is first decomposed into various scales of detail layers and a base layer using RGF. Secondly, we fuse detail layers of diverse scales, then enhance the detail information by using gain coefficients and employ CLAHE to improve the contrast of the base layer. Thirdly, we fuse the detail layers and base layer to obtain the image with global details of the input image. Finally, the proposed algorithm is implemented on an FPGA using advanced high-level synthesis tools. Comprehensive testing of our proposed method on the AXU15EG board demonstrates its effectiveness in significantly improving image contrast and enhancing detail information. At the same time, real-time enhancement at a speed of 147 FPS is achieved for infrared images with a resolution of 640 × 480.