Stereo vision, resulting in the knowledge of deep information in a scene, is of great importance in the field of machine vision, robotics and image analysis. In this article, an explicit analysis of the existing stereo matching methods, up to date, is presented. The presented algorithms are discussed in terms of speed, accuracy, coverage, time consumption, and disparity range. Towards the direction of real-time operation, the development of stereo matching algorithms, suitable for efficient hardware implementation is highly desirable. Implementations of stereo matching algorithms in hardware for real-time applications are also discussed in details.