We study the statistics of the number of records R(n,N) for N identical and independent symmetric discrete-time random walks of n steps in one dimension, all starting at the origin at step 0. At each time step, each walker jumps by a random length drawn independently from a symmetric and continuous distribution. We consider two cases: (I) when the variance σ(2) of the jump distribution is finite and (II) when σ(2) is divergent as in the case of Lévy flights with index 0<μ<2. In both cases we find that the mean record number R(n,N) grows universally as ~α(N) sqrt[n] for large n, but with a very different behavior of the amplitude α(N) for N>1 in the two cases. We find that for large N, α(N) ≈ 2sqrt[lnN] independently of σ(2) in case I. In contrast, in case II, the amplitude approaches to an N-independent constant for large N, α(N) ≈ 4/sqrt[π], independently of 0<μ<2. For finite σ(2) we argue-and this is confirmed by our numerical simulations-that the full distribution of (R(n,N)/sqrt[n]-2sqrt[lnN])sqrt[lnN] converges to a Gumbel law as n → ∞ and N → ∞. In case II, our numerical simulations indicate that the distribution of R(n,N)/sqrt[n] converges, for n → ∞ and N → ∞, to a universal nontrivial distribution independently of μ. We discuss the applications of our results to the study of the record statistics of 366 daily stock prices from the Standard & Poor's 500 index.