Regioselectivity is an important aspect in the design of organic protocols involving Directed ortho-Lithiation (DoL) of arenes, in particular with those arenes containing heteroatom substituents as directing groups. The DoL of 2-[(dimethylamino)methyl]naphthalene (dman) that proceeds with low regioselectivity was revisited by varying both the nature of the lithiating reagent (either n-BuLi or t-BuLi) and/or the solvent (pentane or diethyl ether); the 3-deuterated substrate, 3-Ddman, was also investigated as a substrate to compare to that of dman. The 3-lithio regioisomer exists as tetranuclear [2-(Me2NCH2)C10H6Li-3]4, 1, both in the solid state (X-ray) and in solution (NMR). The 1-lithio regioisomer, 2a, is insoluble; in the presence of additional coordinating solvents (Et2O) or ligands (dman), it exists as dinuclear [2-(Me2NCH2)C10H6Li-1]2·L (coordinated L = Et2O: 2b, dman: 2c) in apolar solvents. Heating solutions of 2c in toluene-d8 (to 90 °C) induced a surprisingly clean and quantitative 1-lithio to 3-lithio conversion of the 1-lithio-naphthalene isomer. This type of reaction is rare in organolithium chemistry and has obvious significant implications for the design of regioselective DoL protocols; this thus represents the synthetically useful protocol for the DoL of dman in a one-pot/two-step process in toluene solution. The results of the use of 3-Ddman in these reactions gives strong credence to a mechanism involving formation of the heteroleptic species [(2-(Me2NCH2)C10H6-1)(2-(Me2NCH2)C10H6-3)Li2]·[dman], A, as the key intermediate. Intramolecular trans-lithiation takes place with A; dman becomes selectively lithiated at its 3-position, while the formerly 1-lithio-naphthalene fragment, acting as a highly unusual ortho-lithiating reagent, is converted into the N-coordinated amine, dman. In this intramolecular DoL process, free dman can be considered to act as a catalyst.