A predictive form of the extended 2-point model known as the ‘reverse 2-point model’, Rev2PM, is applied to a range of detachment levels in the open lower divertor of DIII-D, showing that the experimentally measured electron temperature (Te) and pressure (pe) at the divertor entrance can be calculated within 50% from target measurements, if and only if a posteriori corrections for convective heat flux are included in the model. Unlike the standard 2-point model, the Rev2PM calculates upstream scrape-off layer (SOL) quantities (such as separatrix Te and pe) from target conditions (such as Te and parallel heat flux), with volumetric power and momentum losses depending solely on target Te. The Rev2PM is tested against a database of DIII-D inter-ELM Divertor Thomson Scattering measurements, built from a series of 6 MW, 1.3 MA, LSN H-mode discharges with varied main ion density, drift direction, and nitrogen puffing rate. Measured target Te ranged from 0.4-25 eV over this database, and upstream Te ranged from 5-60 eV. Poor agreement is found between upstream measurements and Rev2PM calculations that assume purely conductive parallel heat transport. However, introducing a posteriori corrections to account for convective heat transport brings the Rev2PM calculations within 50% of the measured upstream values across the dataset. These corrections imply that up to 99% of the parallel heat flux is carried by convection in detached conditions in the DIII-D open lower divertor, though further work is required to assess any potential dependencies on device size or divertor closure.