The following two‐species chemotaxis system with a chemical signalling loop under Lotka–Volterra competitive kinetics
ut=normalΔu−χ1∇·false(u∇vfalse)+μ1ufalse(1−u−a1wfalse),x∈normalΩ,.3emt>0,vt=normalΔv−v+w,x∈normalΩ,.3emt>0,wt=normalΔw−χ2∇·false(w∇zfalse)−χ3∇·false(w∇vfalse)+μ2wfalse(1−w−a2ufalse),x∈normalΩ,.3emt>0,zt=normalΔz−z+u,x∈normalΩ,.3emt>0,
is considered in a bounded domain
normalΩ⊂ℝ3 with homogeneous Neumann boundary conditions, and the parameters μi,ai>0 (i=1,2) and χj>0(j=1,2,3), the initial data are nonnegative and satisfy
false(u0,v0,w0,z0false)∈C0false(truenormalΩ¯false)×C1false(truenormalΩ¯false)×C0false(truenormalΩ¯false)×C1false(truenormalΩ¯false). Global boundedness solution of this system is proved under the conditions
μ1>max{}()10+2()1+34χ12+χ22+χ32+1,0.3em.3em2χ12+()4+3()10+22χ12+χ22+χ32χ12
and
μ2>max{2χ32+()4+3()10+22χ12+χ22+χ32χ32+()10+2()1+34χ12+χ22+χ32+1,}2χ22+()4+3()10+22χ12+χ22+χ32χ22.