This study seeks to validate the accuracy and the efficiency of the aerodynamic reduced order model (ROM). In doing this, snapshot data are generated from the full system analysis of a fighter wing problem. From an eigensystem analysis of these snapshots, the basis vector reproducing the behavior of the full system is obtained. The span length, sweep angle, dihedral angle, and spar and rib thickness representing the wing configuration are determined as the input variables. The constructed ROM is applied to the fighter wing problem while varying the input conditions for validation. Subsequently, a comparison of the reduced system with the full system confirmed that the aerodynamic performance is within 4% error and that the L 2 norms are 10 -6 order of the entire flow field. Therefore, the ROM is able to capture the variation of the aerodynamic performance with respect to the input variables. Though there are structural input variables which influence the aerodynamic performance indirectly, the ROM can reproduce the flow field of the full system. Additionally, even if the ROM incurs a high computational cost to generate snapshots, it can represent the behavior of the full system efficiently once the reduced order model is constructed.