2021
DOI: 10.1007/s10107-021-01726-y
|View full text |Cite
|
Sign up to set email alerts
|

A reformulation-linearization technique for optimization over simplices

Abstract: We study non-convex optimization problems over simplices. We show that for a large class of objective functions, the convex approximation obtained from the Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a sparsity pattern. This characteristic of the optimal solutions allows us to conclude that (i) a linear matrix inequality constraint, which is often added to tighten the relaxation, is vacuously satisfied and can thus be omitted, and (ii) the number of decision variables in t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?