To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China). KEYWORDS RNAi; Drosophila; screens; phenotypes; functional genomics A striking finding from the genomic revolution and wholegenome sequencing is the amount of information missing on gene function. Although Drosophila is arguably the bestunderstood multicellular organism and a proven model system for human diseases, mutations mapped to specific genes with readily detectable phenotypes have been isolated for 15% of the .13919 annotated fly coding genes (http:// flybase.org/; FlyBase R6.06). The lack of information on the majority of genes (the "phenotype gap") suggests that researchers have been unable to either assay their roles experimentally and/or resolve issues of functional redundancy. In addition, some phenotypes may be only detected on specific diets and environments. Further, our understanding of the function of many genes for which we have some information is limited by pleiotropy, whereby an earlier function of the gene prevents analysis of later functions.The availability of in vivo RNAi has revolutionized the ability of Drosophila researchers to disrupt the activity of single genes with spatial and temporal resolution (Dietzl et al. 2007; see review by Perrimon et al. 2010), and thus address the phenotype gap. Motivated by the power of the approach and the needs of the community, three large-scale efforts, the Vienna Drosophila RNAi Center (VDRC, http:// stockcenter.vdrc.at/control/main), the National Institute of Genetics (NIG, http://www.shigen.nig.ac.jp/fly/nigfly/index.jsp), and the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) (http://www.flyrnai.org/TRiP-HOME. html) have over the years generated large numbers of RNAi lines that aim to cover all Drosophila genes. These resources are proving invaluable to address a myriad of questions in various biological and biomedical fields including but not limite...