This paper investigates the cooperative anti-jamming distributed channel selection problem in UAV communication networks. Considering the existence of malicious jamming and co-channel interference, we design an interference-aware cooperative anti-jamming scheme for the purpose of maximizing users’ utilities. Moreover, the channel switching cost and cooperation cost are introduced, which have a great impact on users’ utilities. Users in the UAV group sense the co-channel interference signal energy to judge whether they are influenced by co-channel interference. When the received co-channel interference signal energy is lower than the co-channel interference threshold, users conduct channel selection strategies independently. Otherwise, users cooperate with each other and take joint actions with a cooperative anti-jamming pattern under the impact of co-channel interference. Aiming at the independent anti-jamming channel selection problem under no co-channel interference, a Markov decision process framework is introduced, whereas for the cooperative anti-jamming channel selection case under the influence of co-channel mutual interference, a Markov game framework is employed. Furthermore, motivated by Q-learning with a “cooperation-decision-feedback-adjustment” idea, we design an interference-aware cooperative anti-jamming distributed channel selection algorithm (ICADCSA) to obtain the optimal anti-jamming channel strategies for users in a distributed way. In addition, a discussion on the quick decision for UAVs is conducted. Finally, simulation results show that the proposed algorithm converges to a stable solution with which the UAV group can avoid malicious jamming, as well as co-channel interference effectively and can realize a quick decision in high mobility UAV communication networks.