The present study aims at assessing the Actuator Disk (AD) method supplemented with an Individual Pitch Control (IPC) strategy, at a resolution appropriate for the Large Eddy Simulation of large wind farms. The IPC scheme is based on a state-of-the art individual pitch control, generalized to be applied to an AD approach. This procedure also requires an accurate recovery of the flapwise bending moment on each blade, which is not trivial for a disk-type model. In order to compute flapwise moments on each blade, blade trajectories are reproduced through the disk and the AD aerodynamic forces are interpolated onto these virtual blades at each time step. We verify the AD model with IPC in simulations of an isolated wind turbine, for different wind speeds and turbulence intensities, and in a configuration with two rotors. We compare the AD statistics with those obtained using an Actuator Line (AL) method. The comparison done in terms of equivalent moment shows that the AD and AL simulations produce very similar results.