2017
DOI: 10.1051/itmconf/20171205002
|View full text |Cite
|
Sign up to set email alerts
|

A Relevance Vector Machine Prediction Method Based on the Biased Wavelet Kernel Function

Abstract: Relevance Vector Machine (RVM) is an important learning method in the field of machine learning for its sparsity, global optimality and the ability to solve nonlinear problems by using kernel functions. In this paper, a family of biased wavelets was used to construct the kernel functions of RVM. Biased wavelet have adjustable nonzero mean which makes the kernel of RVM more flexible. With the kernel method of the Centered Kernel Target Alignment (CKTA), the biased parameter was selected to improve the predictio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?