In this paper, a hybrid system is performed with fault detection and diagnosis on multi-phase induction motor (IM). The proposed method is hybrid of integrated Harris Hawk optimization (IHHO) and gradient boosting decision trees (GBDT) thus called the GBDTI2HO method. Here, additional operators are included in this paper to improve HHO’s search behaviour namely crossover and mutation. Distorted waveforms are generated by different frequency patterns to indicate the time domain frequency as an assessment of failure. For this signal representation, the discrete wavelet transformation (DWT) is suggested. It extracts the characteristics and forwards them to IHHO technique to form the possible data sets. After the generation of the data set, GBDT classifies the ways of failure reached as winding of stator in multi-phase IM. The implementation of the proposed system is compared with existing systems, such as ANN, S-Transform and GBDT. The proposed method is executed on MATLAB/Simulink work platform to demonstrate the successfulness of proposed system, statistical measures are determined, as precision, sensitivity and specificity, mean median and standard deviation. For demonstrating the successfulness of proposed system, statistical measures are determined as precision, sensitivity, specificity, mean median as well as standard deviation. In 50 trails the proposed method, 0.98 for accuracy, 0.96 for specificity, 1.60 for recall as well as 0.97 for precision. In 100 trail the proposed method, 0.96 for accuracy, 0.93 for specificity, 0.87 for recall as well as 0.99 for precision.