Lung disorders involve swelling, inflammation, and muscle tightening around the airways, with symptoms such as coughing, wheezing, shortness of breath, and abnormal fluid build-up. The global prevalence of these conditions is rising, highlighting the need for extensive research to alleviate their severity and symptoms. Due to the chronic nature and recurrence of these disorders, the human body often develops immunity and side effects to certain medications. Therefore, developing novel and appropriate drug combinations is crucial. This study analyzes a dataset of lung disorder drugs, characterized by various topological indices. The structures of 16 drugs used to treat lung disorders are correlated with their physical properties using degree-based graph invariants. When considering specific attributes, the VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) method provides an optimal ranking for each drug. The QSPR results highlight the effectiveness of this approach in drug prioritization, offering valuable insights for clinical decision-making and drug development. This methodology can enhance the strategic selection of treatments for lung disorders, leading to improved patient care and better resource allocation.