2021
DOI: 10.2991/ijcis.d.210409.002
|View full text |Cite
|
Sign up to set email alerts
|

A Repairing Artificial Neural Network Model-Based Stock Price Prediction

Abstract: Predicting the stock price movements based on quantitative market data modeling is an open problem ever. In stock price prediction, simultaneous achievement of higher accuracy and the fastest prediction becomes a challenging problem due to the hidden information found in raw data. Various prediction models based on machine learning algorithms have been proposed in the literature. In general, these models start with the training phase followed by the testing phase. In the training phase, the past stock market d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 43 publications
0
1
0
1
Order By: Relevance
“…The trading process is organized by an official body called the capital market. A capital market is where long-term transaction processes take place [3]. The capital market is not a physical facility or a discrete entity, and the capital market brings together sellers and buyers of shares as a claim on business ownership [4].…”
Section: Introductionmentioning
confidence: 99%
“…The trading process is organized by an official body called the capital market. A capital market is where long-term transaction processes take place [3]. The capital market is not a physical facility or a discrete entity, and the capital market brings together sellers and buyers of shares as a claim on business ownership [4].…”
Section: Introductionmentioning
confidence: 99%
“…[532] optimizan los datos de entrada y los parámetros de una red neuronal artificial (RNA) para mejorar la precisión de la predicción de una red neuronal NARX que predice las acciones de CIMB (Commerce International Merchant Bankers) en Malasia. [533] optimizan los parámetros y variables de entrada de una red neuronal artificial reparadora (RANN) generando una precisión de clasificación de hasta el 98.37% en los índices bursátiles Nifty50, Nifty Bank, Nifty Pharma, BSE IT y BSE Oil and Gas. [330], utilizando la técnica de búsqueda en cuadrícula "Grid Search", definieron los mejores valores de los hiperparámetros de una máquina de vectores de soporte (SVM), XGBoost (XGB), una red neuronal convolucional (CNN) y una red neuronal de memoria a largo plazo (LSTM) para predecir la dirección del bitcoin.…”
Section: Definición De Hiperparámetrosunclassified