Global warming caused by excessive emissions of CO2 and other greenhouse gases is one of the greatest challenges for mankind in the 21st century. China is the world’s largest carbon emitter and its transportation industry is one of the fastest growing sectors for carbon emissions. However, China is a vast country with different levels of carbon emissions in the transportation industry. Therefore, it is helpful for the Chinese government to formulate a reasonable policy of regional carbon emissions control by studying the factors influencing the carbon emissions of the Chinese transportation industry at the regional level. Based on data from 1997 to 2017, this paper adopts the logarithmic mean divisia index (LMDI) decomposition method to analyze the influencing degree of several major factors on the carbon emissions of transportation industry in different regions, puts forward some suggestions according to local conditions, and provides references for the carbon reduction of Chinese transportation industry. The results show that (1) in 2017, the total carbon emissions of the Chinese transportation industry were 714.58 million tons, being 5.59 times of those in 1997, with an average annual growth rate of 9.89%. Among them, the carbon emissions on the Eastern Coast were rising linearly and higher than those in other regions. The carbon emissions in the Great Northwest were always lower than those in other regions, with only 38.75 million tons in 2017. (2) Economic output effect is the most important factor to promote the carbon emissions of transportation industry in various regions. Among them, the contribution values of economic output effect to carbon emissions on the Eastern Coast, the Southern Coast and the Great Northwest continued to rise, while the contribution values of economic output effect to carbon emissions in the other five regions decreased in the fourth stage. (3) The population size effect promoted the carbon emissions of the transportation industry in various regions, but the population size effect of the Northeast had a significant inhibitory influence on the carbon emissions in the fourth stage. (4) The regional energy intensity effect in most stages inhibited carbon emissions of the transportation industry. Among them, the energy intensity effects of the North Coast and the Southern Coast in the two stages had obvious inhibitory influences on carbon emissions of the transportation industry, but the contribution values of the energy intensity effect in the Great Northwest and the Northeast were positive in the fourth stage. (5) Except for the Great Southwest, the industry-scale effects of other regions had inhibited the carbon emissions of transportation industry in all regions. (6) The influences of the carbon emissions coefficient effect on carbon emissions in different regions were not significant and their inhibitory effects were relatively small.