2022
DOI: 10.1371/journal.pone.0272790
|View full text |Cite
|
Sign up to set email alerts
|

A reservoir bubble point pressure prediction model using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique with trend analysis

Abstract: The bubble point pressure (Pb) could be obtained from pressure-volume-temperature (PVT) measurements; nonetheless, these measurements have drawbacks such as time, cost, and difficulties associated with conducting experiments at high-pressure-high-temperature conditions. Therefore, numerous attempts have been made using several approaches (such as regressions and machine learning) to accurately develop models for predicting the Pb. However, some previous models did not study the trend analysis to prove the corr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 41 publications
0
1
0
1
Order By: Relevance
“…However, today, with the advancement of technology and a set of artificial intelligence algorithms that are accessible, cheap, and fast, it is possible to replace the old methods that are sometimes full of bugs. Among the articles that used artificial intelligence to determine and predict key parameters, the following can be mentioned: key parameters for reservoirs (Naveshki et al, 2021;Alakbari et al, 2022;Rajabi et al, 2022a;Ayoub Mohammed et al, 2022;Hassan et al, 2022;Jafarizadeh et al, 2022); drilling (Beheshtian et al, 2022;Rajabi et al, 2022c); petrophysics Gao et al, 2022;Kamali et al, 2022).…”
Section: Methodsmentioning
confidence: 99%
“…However, today, with the advancement of technology and a set of artificial intelligence algorithms that are accessible, cheap, and fast, it is possible to replace the old methods that are sometimes full of bugs. Among the articles that used artificial intelligence to determine and predict key parameters, the following can be mentioned: key parameters for reservoirs (Naveshki et al, 2021;Alakbari et al, 2022;Rajabi et al, 2022a;Ayoub Mohammed et al, 2022;Hassan et al, 2022;Jafarizadeh et al, 2022); drilling (Beheshtian et al, 2022;Rajabi et al, 2022c); petrophysics Gao et al, 2022;Kamali et al, 2022).…”
Section: Methodsmentioning
confidence: 99%
“…Elsharkawy [4] y Gharbi y col. [5,6] estuvieron entre los primeros que utilizaron modelos de aprendizaje automático para predecir la presión de burbujeo de los fluidos de un yacimiento. Desde entonces, se han presentado muchos estudios que buscan reemplazar a los métodos tradicionales con técnicas de inteligencia artificial/aprendizaje automático debido a su exactitud, confiabilidad, rápida velocidad de respuesta y robusta capacidad de generalización [7] - [10]. En el presente estudio se utilizó la colección de algoritmos de aprendizaje automático del programa Weka [11] para predecir la presión de burbujeo de 36 muestras de petróleo y se determinó la precisión de sus resultados con los métodos de prueba validación cruzada de 10 pliegues y validación con los datos de entrenamiento.…”
Section: Introductionunclassified