“…Its commutative version, i.e., the canonical hypergroup, dates back to the beginning of 1970s, when Mittas [25] studied it as an independent structure in the framework of valuation theory, and not just as the additive structure of a hyperfield. In fact, this was the way that canonical hypergroups appeared in the first studies of Krasner [26] and have continued to be investigated as the additive structure of the Krasner hyperfields and the hypercompositional structure with the most applications in different areas, e.g., valuation theory [27][28][29], algebraic geometry [30], number theory, affine algebraic group schemes [31], matroids theory [32], tropical geometry [33], and hypermodules [34]. The state of the art in hyperfield theory was included in an article recently published by Ch.…”