We investigate the relationship between the long term X-ray spectral variability in the Seyfert 1.5 galaxy NGC 4151 and its intrinsic absorption, by comparing the 2014 simultaneous ultraviolet/XRay observations taken with Hubble STIS Echelle and Chandra HETGS with archival observations from Chandra, XMM-Newton and Suzaku. The observations are divided into "high" and "low" states, with the low states showing strong and unabsorbed extended emission at energies below 2 keV. Our X-ray model consists of a broken powerlaw, neutral reflection and the two dominant absorption components identified by Kraemer et al. (2005), hereafter KRA2005, X-High and D+Ea, which are present in all epochs. The model fittings suggest that the absorbers are very stable, with the principal changes in the intrinsic absorption resulting from variations in the ionization state of the gas as the ionizing continuum varies. However, the low states show evidence of larger column densities in one or both of the absorbers. Among plausible explanations for the column increase, we discuss the possibility of an expanding/contracting X-ray corona. As suggested by KRA2005, there seem to be contributions from magnetohydrodynamic (MHD) winds to the mass outflow. Along with the ultra fast outflow absorber identified by Tombesi et al. (2010), X-High is consistent with being magnetically driven. On the other hand, it is unlikely that D+Ea is part of the MHD flow, and it is possible that it is radiatively accelerated. These results suggest that at a sufficiently large radial distance there is a break point between MHD-dominated and radiatively driven outflows.