LINE-1 (L1) retrotransposons are repetitive elements in mammalian genomes. They are
capable of synthesizing DNA on their own RNA templates by harnessing reverse
transcriptase (RT) that they encode. Abundantly expressed full-length L1s and their
RT are found to globally influence gene expression profiles, differentiation state,
and proliferation capacity of early embryos and many types of cancer, albeit by yet
unknown mechanisms. They are essential for the progression of early development and
the establishment of a cancer-related undifferentiated state. This raises important
questions regarding the functional significance of L1 RT in these cell systems.
Massive nuclear L1-linked reverse transcription has been shown to occur in mouse
zygotes and two-cell embryos, and this phenomenon is purported to be DNA replication
independent. This review argues against this claim with the goal of understanding the
nature of this phenomenon and the role of L1 RT in early embryos and cancers.
Available L1 data are revisited and integrated with relevant findings accumulated in
the fields of replication timing, chromatin organization, and epigenetics, bringing
together evidence that strongly supports two new concepts. First, noncanonical
replication of a portion of genomic full-length L1s by means of L1 RNP-driven reverse
transcription is proposed to co-exist with DNA polymerase-dependent replication of
the rest of the genome during the same round of DNA replication in embryonic and
cancer cell systems. Second, the role of this mechanism is thought to be epigenetic;
it might promote transcriptional competence of neighboring genes linked to
undifferentiated states through the prevention of tethering of involved L1s to the
nuclear periphery. From the standpoint of these concepts, several hitherto
inexplicable phenomena can be explained. Testing methods for the model are
proposed.ReviewersThis article was reviewed by Dr. Philip Zegerman (nominated by Dr. Orly Alter),
Dr. I. King Jordan, and Dr. Panayiotis (Takis) Benos. For the complete reviews,
see the Reviewers’ Reports section.