Brazil has emerged as the world’s largest soybean producer and exporter in recent years. In the Brazilian Amazon Biome, the state of Pará has become a new agricultural frontier over the last two decades due to a significant increase in soybean cultivation throughout its territory. However, it is essential to understand the associated effects on the environment at every point in the supply chain. This research aims to measure the effects on the environment of the soybean supply chain of two production poles utilising openLCA software and the life cycle assessment (LCA) methodology in the northeast (Paragominas) and south (Redenção) of the state of Pará in Brazil. In addition, we determine which is the most efficient route between the shipment port and the ultimate destination. The Recipe Midpoint (H) and Intergovernmental Panel on Climate Change (IPCC) methods of environmental impact categories were used in accordance with the cradle-to-grave scope. The BRLUC regionalised model (v1.3) was used to quantify land use change (LUC). According to the observed results, LUC was primarily responsible (between 3.8 and 32.69 tCO2 Eq·ha−1·year−1) for the global warming potential (GWP) of the soybean supply chain when rainforest-occupied land was converted into cropland. The soybean harvest in the Redenção pole is better loaded through the port of Itaqui (TEGRAM), which is in São Luis (state of Maranhão), due to the use of multiple modes of transport (lorry + train), allowing for better logistical performance and less impact on the environment, despite the longest distance (road + railway = 1306 km). Due to the short road distance (approximately 350 km) and consequently lower environmental impact, soybean harvested in the Paragominas pole is better loaded through the ports around Barcarena in the state of Pará.