There are several real applications where the categories behind compositional data (CoDa) exhibit a natural order, which, however, is not accounted for by existing CoDa methods. For various application areas, it is demonstrated that appropriately developed methods for ordinal CoDa provide valuable additional insights and are, thus, recommended to complement existing CoDa methods. The potential benefits are demonstrated for the (visual) descriptive analysis of ordinal CoDa, for statistical inference based on CoDa samples, for the monitoring of CoDa processes by means of control charts, and for the analysis and modelling of compositional time series. The novel methods are illustrated by a couple of real-world data examples.