Purpose
The purpose of this paper is to give a comprehensive review and synthesis of automated textual analysis of corporate disclosure to show how the accuracy of disclosure tone has been incremented with the evolution of developed automated methods that have been used to calculate tone in prior studies.
Design/methodology/approach
This study have conducted the survey on “automated textual analysis of corporate disclosure and its impact” by searching at Google Scholar and Scopus research database after the year 2000 to prepare the list of papers. After classifying the prior literature into a dictionary-based and machine learning-based approach, this study have again sub-classified those papers according to two other dimensions, namely, information sources of disclosure and the impact of tone on the market.
Findings
This study found literature on how value relevance of tone is varied with the use of different automated methods and using different information sources. This study also found literature on the impact of such tone on market. These are contributing to help investor’s decision-making and earnings and returns prediction by researchers. The literature survey shows that the research gap lies in the development of methodologies toward the calculation of tone more accurately. This study also mention how different information sources and methodologies can influence the change in disclosure tone for the same firm, which, in turn, may change market performance. The research gap also lies in finding the determinants of disclosure tone with large scale data.
Originality/value
After reviewing some papers based on automated textual analysis of corporate disclosure, this study shows how the accuracy of the result is incrementing according to the evolution of automated methodology. Apart from the methodological research gaps, this study also identify some other research gaps related to determinants (corporate governance, firm-level, macroeconomic factors, etc.) and transparency or credibility of disclosure which could stimulate new research agendas in the areas of automated textual analysis of corporate disclosure.