2008
DOI: 10.1016/j.compind.2007.09.001
|View full text |Cite
|
Sign up to set email alerts
|

A review of automated feature recognition with rule-based pattern recognition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
139
0
4

Year Published

2013
2013
2019
2019

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 253 publications
(143 citation statements)
references
References 57 publications
0
139
0
4
Order By: Relevance
“…rozpoznawanie cech w komercyjnych systemach CAM Dostępnych jest szereg metod rozpoznawania cech technologicznych [1][2][3][4]. Producenci systemów CAM nie informują o wybranej metodzie rozpoznawania.…”
unclassified
See 2 more Smart Citations
“…rozpoznawanie cech w komercyjnych systemach CAM Dostępnych jest szereg metod rozpoznawania cech technologicznych [1][2][3][4]. Producenci systemów CAM nie informują o wybranej metodzie rozpoznawania.…”
unclassified
“…Biorąc jednak pod uwagę fakt, że źródłem danych wejściowych jest model geometryczny z reprezentacją B-Rep oraz szeroko podkreślane wady metod grafowych [1], wydaje się, że stosowane są metody rozpoznawania logicznego, ewentualnie metody typu hint based reasoning. Obydwie te ostatnio wymienione metody operują na reprezentacji B-Rep [1]. Metoda logiczna analizuje przede wszystkim powierzchnie pod kątem występowania na nich tzw.…”
unclassified
See 1 more Smart Citation
“…Verma et al [13] proposed the hint-based machining feature recognition system, which uses the potential hint of a feature trace to recognize the machining features. Babic et al [14] reviewed multiple methods regarding solving the automatic feature recognition problem, and discussed the constraints and future applicability of these methods. Li et al [15] proposed an integrated approach based on Feature Hints, the Graph Theory, and an Artificial Neural Network, which could recognize overlapped machining features.…”
Section: Introductionmentioning
confidence: 99%
“…Tremendous effort has been put into developing an automated process planner as documented in a number of past studies. Those works evolved around feature recognition [12][13][14][15][16][17][18], knowledge representation [19][20][21][22][23][24][25] and inference engine [26,27], and integration of process planning, and upstream or downstream processes [28,29]. Some researchers applied different methods/technologies such as OPPS-PRI 2.0 system [30], genetic algorithms (GA) [31][32][33][34][35][36], imperialist competitive algorithm [37], energy-efficient oriented method [38], neural network-based system [39][40][41], fuzzy set theory/fuzzy logic method [39,42,43], agent-based methodology [44,45], Internet-based technology [46,47], functional blocks [48,49], Petri net model [50] and STEP-compliant method [51][52][53][54], just to name a few, f...…”
Section: Introductionmentioning
confidence: 99%