2018
DOI: 10.1109/rbme.2017.2777907
|View full text |Cite
|
Sign up to set email alerts
|

A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases

Abstract: Bedside caregivers assess infants' pain at constant intervals by observing specific behavioral and physiological signs of pain. This standard has two main limitations. The first limitation is the intermittent assessment of pain, which might lead to missing pain when the infants are left unattended. Second, it is inconsistent since it depends on the observer's subjective judgment and differs between observers. Intermittent and inconsistent assessment can induce poor treatment and, therefore, cause serious long-… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
83
0
23

Year Published

2019
2019
2023
2023

Publication Types

Select...
3
2
2
1

Relationship

2
6

Authors

Journals

citations
Cited by 88 publications
(106 citation statements)
references
References 126 publications
0
83
0
23
Order By: Relevance
“…Neonatal face detection in the NICU is a challenging task due to several external factors such as illumination variations and partial occlusions (e.g., tapes or pacifier). As discussed in [10], several facial landmark trackers faced difficulty when applied to detect and track the face of infants.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Neonatal face detection in the NICU is a challenging task due to several external factors such as illumination variations and partial occlusions (e.g., tapes or pacifier). As discussed in [10], several facial landmark trackers faced difficulty when applied to detect and track the face of infants.…”
Section: Methodsmentioning
confidence: 99%
“…Existing automated methods for assessing pain of neonates from facial expression are broadly classified into handcrafted methods and deep learning methods [10].…”
Section: Introductionmentioning
confidence: 99%
“…In contrast, video-based methods appear to be a promising approach, since it is more comfortable and convenient to use both in the home or in the hospitals [19] [20]. With the advancements in deep learning algorithms and clinical research on neonatal facial patterns [21] [22] a new, unobtrusive approach of monitoring sleep patterns has been proposed [23] [24]. However, evaluation of the deep learning models demand big database to train the prediction model.…”
Section: Introductionmentioning
confidence: 99%
“…Neste contexto, diversos trabalhos têm sido desenvolvidos nosúltimos anos para automatizar a avaliação da dor do RN [1] [2] [3]. Em particular, a metodologia desenvolvida em [2] mostrou-se bem sucedida no que se refereà possibilidade de automatizar a avaliação da dor do RN por meio da captura de imagens de face, da decodificação das mesmas e da classificação do resultado, como dor presente ou ausente em intervalo de tempo quase instantâneo.…”
Section: Introductionunclassified
“…Entretanto, essa metodologia [2] e as demais existentes [1] [3], no estágio em que se encontram, não trazem informações a respeito da relevância das características intrínsecas da face do RN que definem a dor usadas pelo profissional de saúde para interpretação deste fenômeno, sendo capazes de identificar a dor como presente somente se o recém-nascido expressar-se caracteristicamente por meio de expressões faciais específicas e pré-determinadas.…”
Section: Introductionunclassified