Despite the global importance of solar energy, its variability requires energy storage to balance production during peak and off-peak periods. Moreover, the transport sector is undergoing a global transition from internal combustion engines to electric vehicles. Since vehicles are idle 95% of the time, electric vehicle batteries, when connected to a grid, can effectively regulate intermittent photovoltaics using vehicle-to-grid technology. This conceptual study investigates the feasibility of a nationwide energy infrastructure that relies solely on solar energy, replacing other electricity sources, such as solid fuels, petroleum products, and natural gas, and utilizes electric vehicles as the sole battery energy storage system. This study aims to demonstrate the significant potential and benefits of such collaboration. The theoretical study combines historical data, assumptions, and conditions to build a simulation model that is modelled similarly as in previous conceptual studies of nationwide energy systems based solely on photovoltaics and electric vehicles, referenced in this article. In Slovenia, the total surface size suitable for the installation of photovoltaic systems is estimated to be 280 km2. The calculations show that a surface size of 217 km2 for photovoltaic systems can produce enough energy to cover Slovenia’s entire energy demand, Slovenia’s final energy consumption. However, simulations comparing photovoltaic production, total energy consumption (electricity, solid fuels, etc.), and the capacity of electric vehicle batteries show that a surface size of more than 500 km2 with photovoltaic systems and a 200% share of electric vehicles in the Slovenian vehicle fleet in 2022 will provide satisfactory results. Therefore, for a country like Slovenia, in addition to a solar power plant with a surface size of 280 km2, additional renewable energy sources are needed to cover the total energy demand, as well as additional battery energy storage systems in addition to electric vehicles.