The use of CO 2 and CO 2 -derived chemicals offers society sustainable and biocompatible chemistry for a variety of applications, ranging from materials to medicines. In this context, dimethyl carbonate (DMC) stands out owing to its low toxicity, high biodegradability, tunable reactivity, and sustainable production. Further, the ability of DMC to act as an ambient electrophile at varied temperatures and reaction conditions in order to produce methoxycarbonylated (via B AC 2) and methylated products (via B AL 2) is very promising. While the methylation of hetero-H (N-, O-, and S-methylation) with DMC is established and well-reviewed, the C−H methylation reaction with DMC is limited, and there is no specific literature detailing the C-methylation reaction using DMC, creating new opportunities as well as challenges in the same domain. In this context, the present perspective focuses on the new breakthroughs, recent advances, and trends in C−H methylation reactions employing DMC. A critical analysis of the mechanistic course of reactions under each category was undertaken. We believe this timely perspective will offer an in-depth analysis of existing literature with critical remarks, which will certainly inspire fellow researchers across disciplines to understand and pursue cutting-edge research in the area of C−H methylation (alkylation) using DMC and related organic carbonates.