Coke is an indispensable and vital flue for blast furnace smelting, during which it plays a key role as a reducing agent, heat source, and support skeleton. Models of prediction of coke quality based on ANN are established to map the functional relationship between quality parameters Mt, Ad, Vdaf, St,d, and caking property (X, Y, and G) of mixed coal and quality parameters Ad, St,d, coke reactivity index (CRI), and coke strength after reaction (CSR) of coke. A regularized network training method based on Sigmoid function is designed considering that redundancy of network structure may lead to the learning of undesired noise, in which weights having little impact on performance and leading to overfitting are removed in terms of computational complexity and training errors. The cascade forward neural network with validation is found to be the most suitable one for coke quality prediction, with errors around 5%, followed by feedforward neural network structure and radial basis neural networks. The cascade forward neural network may play a guiding role during the coke production.