To properly conduct a micro-siting of an orthopter-type vertical axis wind turbine (O-VAWT) in the built environment, this study investigated the effects of horizontal shear flow on the power performance characteristics of an O-VAWT by performing wind tunnel experiments and computational fluid dynamics (CFD) simulations. A uniform flow and two types of shear flow (advancing side faster shear flow (ASF-SF) and retreating side faster shear flow (RSF-SF)) were employed as the approaching flow to the O-VAWT. The ASF-SF had a higher velocity on the advancing side of the rotor. The RSF-SF had a higher velocity on the retreating side of the rotor. For each type of shear flow, three shear strengths (Γ = 0.28, 0.40 and 0.51) were set. In the ASF-SF cases, the power coefficients (Cp) were significantly higher than the uniform flow case at all tip speed ratios (λ) and increased with Γ. In the RSF-SF cases, CP increased with Γ. However, when Γ = 0.28, the CP was lower than the uniform flow case at all λ. When Γ = 0.51, the CP was higher than the uniform flow case except at low λ; however, it was lower than the ASF-SF case with Γ = 0.28. The causes of the features of CP were discussed through the analysis of the variation of blade torque coefficient, its rotor-revolution component and its blade-rotation component with azimuthal angle by using the CFD results for flow fields (i.e., horizontal velocity vectors, pressure and vorticity). These results indicate that a location where ASF-SFs with high Γ values dominantly occur is ideal for installing the O-VAWT.