2021
DOI: 10.1051/matecconf/202134902021
|View full text |Cite
|
Sign up to set email alerts
|

A Review of Computer Vision Techniques in the Detection of Metal Failures

Abstract: This paper considers and contrasts several computer vision techniques used to detect defects in metallic components during manufacturing or in service. Methodologies include statistical analysis, weighted entropy modification, Fourier transformations, neural networks, and deep learning. Such systems are used by manufacturers to perform non-destructive testing and inspection of components at high speeds [1]; providing better error detection than traditional human visual inspection, and lower costs [2]. This is … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?