According to the World Health Organization (WHO), seventy million individuals worldwide suffer from epilepsy, a neurological disorder. While electroencephalography (EEG) is crucial for diagnosing epilepsy and monitoring the brain activity of epilepsy patients, it requires a specialist to examine all EEG recordings to find epileptic behavior. This procedure needs an experienced doctor, and a precise epilepsy diagnosis is crucial for appropriate treatment. To identify epileptic seizures, this study employed a convolutional neural network (CNN) based on raw scalp EEG signals to discriminate between preictal, ictal, postictal, and interictal segments. The possibility of these characteristics is explored by examining how well time-domain signals work in the detection of epileptic signals using intracranial Freiburg Hospital (FH), scalp Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) databases, and Temple University Hospital (TUH) EEG. To test the viability of this approach, two types of experiments were carried out. Firstly, binary class classification (preictal, ictal, postictal each versus interictal) and four-class classification (interictal versus preictal versus ictal versus postictal). The average accuracy for stage detection using CHB-MIT database was 84.4%, while the Freiburg database's time-domain signals had an accuracy of 79.7% and the highest accuracy of 94.02% for classification in the TUH EEG database when comparing interictal stage to preictal stage.