There has been a significant increase in the use of deep learning algorithms in recent years. Convolutional neural network (CNN), one of the deep learning models, is frequently used in applications to distinguish important objects such as humans and vehicles from other objects, especially in image processing. With the development of image processing hardware, the image processing process is significantly reduced. Thanks to these developments, the performance of studies on deep learning is increasing. In this study, a system based on deep learning has been developed to detect and classify objects (human, car and motorcycle / bicycle) from images captured by drones. Two datasets, the image set of Stanford University and the drone image set created at Afyon Kocatepe University (AKÜ), are used to train and test the deep neural network with the transfer learning method. The precision, recall and f1 score values are evaluated according to the process of determining and classifying human, car and motorcycle / bicycle classes using GoogleNet, VggNet and ResNet50 deep learning algorithms. According to this evaluation result, high performance results are obtained with 0.916 precision, 0.895 recall and 0.906 f1 score value in the ResNet50 model.