Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Super-resolution (SR) of remote sensing images is essential to compensate for missing information in the original high-resolution (HR) images. Single-image super-resolution (SISR) technique aims to recover high-resolution images from low-resolution (LR) images. However, traditional SISR methods often result in blurred and unclear images due to the loss of high-frequency details in LR images at high magnifications. In this paper, a super-segmental reconstruction model STGAN for remote sensing images is proposed, which fuses the Generative Adversarial Networks (GANs) and self-attention mechanism based on the Reference Super Resolution method (RefSR). The core module of the model consists of multiple CNN-Swin Transformer blocks (MCST), each of which consists of a CNN layer and a specific modified Swin Transformer, constituting the feature extraction channel. In image hypersegmentation reconstruction, the optimized and improved correlation attention block (RAM-V) uses feature maps and gradient maps to improve the robustness of the model under different scenarios (such as land cover change). The experimental results show that the STGAN model proposed in this paper exhibits the best image data perception quality results with the best performance of LPIPS and PI metrics in the test set under RRSSRD public datasets. In the experimental test set, the PSNR reaches 31.4151, the SSIM is 0.8408, and the performance on the RMSE and SAM metrics is excellent, which demonstrate the model’s superior image reconstruction details in super-resolution reconstruction and highlighting the great potential of RefSR’s application to the task of super-scalar processing of remotely sensed images.
Super-resolution (SR) of remote sensing images is essential to compensate for missing information in the original high-resolution (HR) images. Single-image super-resolution (SISR) technique aims to recover high-resolution images from low-resolution (LR) images. However, traditional SISR methods often result in blurred and unclear images due to the loss of high-frequency details in LR images at high magnifications. In this paper, a super-segmental reconstruction model STGAN for remote sensing images is proposed, which fuses the Generative Adversarial Networks (GANs) and self-attention mechanism based on the Reference Super Resolution method (RefSR). The core module of the model consists of multiple CNN-Swin Transformer blocks (MCST), each of which consists of a CNN layer and a specific modified Swin Transformer, constituting the feature extraction channel. In image hypersegmentation reconstruction, the optimized and improved correlation attention block (RAM-V) uses feature maps and gradient maps to improve the robustness of the model under different scenarios (such as land cover change). The experimental results show that the STGAN model proposed in this paper exhibits the best image data perception quality results with the best performance of LPIPS and PI metrics in the test set under RRSSRD public datasets. In the experimental test set, the PSNR reaches 31.4151, the SSIM is 0.8408, and the performance on the RMSE and SAM metrics is excellent, which demonstrate the model’s superior image reconstruction details in super-resolution reconstruction and highlighting the great potential of RefSR’s application to the task of super-scalar processing of remotely sensed images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.