In the maintenance engineering of asphalt pavement, it is often encountered that both the surface and middle layers are damaged and need to be maintained. The cold in-place recycling technology can be used to simultaneously treat multi-layer diseases and reduce the waste of pavement materials. The cold in-place recycling mixture is rarely used for high layer of pavement structure in high-grade highway. In the supporting practical engineering, the emulsified asphalt cold in-place recycling mixtures were paved as the middle layer of pavement structure by the laying of an overlay. In order to comprehensively evaluate the material performances, coring samples were drilled after cold recycling pavement opening to traffic, and different performance tests were carried out based on the coring samples. The newly paved SMA mixtures were set as the control group. The high temperature stability of cold recycling mixture was analyzed by dynamic creep test and MMLS3 accelerated loading test. Then, the cracking resistance of cold recycling mixture was studied by semi-circular bending test. Finally, the effect of curing time on splitting strength of cold recycling mixture was measured, and the moisture susceptibility was analyzed by dry–wet splitting test and freeze–thaw splitting test. The test results showed that the high temperature stability of cold recycling mixture was worse than SMA mixture. For the cold recycling mixture, the deformation value at the early stage and deformation rate at the stable stage were larger than SMA mixture in the accelerated loading process, and shear failure at high temperature occurred earlier. The cracking resistance of cold recycling mixture was worse than SMA mixture because of the aging effect of the old asphalt and adverse influence of the added cement binder. The effect of curing time on splitting strength of cold recycling mixture was significant, and two stable periods of early strength were, respectively, reached after curing 3 days and 7 days. The indexes of moisture susceptibility, including dry–wet splitting strength ratio and freeze–thaw splitting strength ratio, were obviously lower than that of SMA mixture, and the test values not up to the standard requirement existed. For the emulsified asphalt cold in-place recycling mixture, the improvement of material performances should be focused on, especially the moisture susceptibility. In the research, the emulsified asphalt cold in-place recycling mixtures were acceptably used as the middle layer of maintenance pavement structure. The reliable discussions were summarized based on coring samples collected from real-life road sections. The case can provide guidance and reference for similar engineering applications.